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SUMMARY 

The re la t ive  intensi ty  of radiation fromthe hot gas i n  the  shock layer 

Spat ia l  resolution of the radiation w a s  achieved using an image 
was measured fo r  axisymmetric bodies with nose shapes ranging from a f la t  face 
t o  a hemisphere. 
dissector,  a device which opt ical ly  scans s t r i p s  across the model face. Data 
were obtained from models i n  f ree  f l i g h t  a t  veloci t ies  ranging from 7.5 t o  
8.2 kilometers per second and a t  free-stream densi t ies  of 0.013 and 0.067 
standard atmosphere. 

Th.e r e su l t s  of the present measurements are  compared d i rec t ly  with calcula- 
t ions  of the radiation dis t r ibut ion based upon computation of shock-layer temper- 
a ture  and density and the available predictions of equilibrium thermal radiation 
of air .  Good agreement i s  obtained, indicating tha t  the dis t r ibut ion of equili-  
brium radiation i n  the shock layer about blunt bodies i s  w e l l  understood. 

IN'IRODUCTION 

The radiative heat transfer fromthe hot air  i n  the shock layer t o  the 
stagnation point of bodies f lying a t  hypersonic speeds has been studied exten- 
sively.  
analytic predictions based on shock-tube experiments and measurements made i n  
b a l l i s t i c  ranges; values of the stagnation-point heating flux, deduced from 
measured t o t a l  in tens i t ies  from the shock layer,  are available for  the speed 
range from 4.5 t o  13 kilometers per second (e.g., see refs. 1 and 2 ) .  

Good correlation of radiation in tens i t ies  has been achieved between 

The application of t h i s  information t o  calculations of the radiative heating 
elsewhere on bodies is  f a i r l y  straightforward, provided the shock shape and loca l  
gas properties can be estimated accurately throughout the shock layer. 
example of t h i s  kind of estimation i s  found i n  reference 3 where Wick presents 
f a i r l y  extensive calculations fo r  radiative heating f lux  across the faces of 
blunt axisymmetric bodies. H i s  calculations are  for  shock layers i n  thermo- 
dynamic and chemical equilibrium and were made fo r  a wide range of f l i gh t  
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conditions fo r  bodies of varying bluntness ranging from hemispherical (R/d = 
t o  R / d  = 2.0. Here R i s  nose radius and d i s  body diameter at  the body 
shoulder. 

0.5) 

The purpose of the present work i s  t o  provide measurements of the distribu- 
t ions of radiative intensi ty  as a function of posit ion on blunt ax ia l ly  symmetric 
bodies. 
One shape not analyzed i n  Wick's paper, a flat-faced cylinder R/d = M), was a lso  
tested.  
numerical procedure as used i n  reference 3, are presented herein fo r  comparison. 

The h t a  are compared d i rec t ly  with the ca1cula.tions mentioned above. 

Estimates of the dis t r ibut ion on t h i s  body, based on much the same 

SYMBOLS 

CP 

d 

F 

1 

r 

e 

pre s sure coefficient 

body diameter a t  shoulder, em 

portion of t o t a l  radiation t o  which the image dissector i s  sensit ive 

radiation intensi ty ,  watts/cmZ 

pressure, dynes/cm2 

nose radius, cm 

re la t ive  response of image dissector as a function of wave length 

radius of cross section 

r ad ia l  distance along body face from center, cm 

temperature, OK 

transmissivity of image dissector as a function of wave length 

velocity , km/ sec 

Planck black-body function, watts/cm2 micron 

coordinate along body axis,  origin at  wave apex, cm 

shock-wave standoff distance measured normal t o  surface, cm 

angle between opt ical  ax is  of image dissector and bore sight of the 
launching gun, deg 

angle from body stagnation point t o  loca l  point on body surface, 
180s/m, deg 
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cp 

I-1 

P 

angle between opt ica l  axis of the image dissector and normal t o  body 
surface, deg 

t o t a l  absorption coefficient of hot air as defined i n  reference 1 

density, gm/cm3 

Sub scr ip t  s 

e edge or shoulder of body 

S a t  the shock wave 

0 standard atmospheric conditions 

stag stagnation point 

m free- stream conditions 

APPARATUS 

Ba l l i s t i c  Range 

High-speed conditions fo r  the t e s t s  were obtained i n  a short b a l l i s t i c  range 
equipped with a deformable-piston light-gas gun (ref. 4 ) .  
ment included a nmiber of shadowgraph s ta t ions and accompanying electronic 
counters fo r  determining model a t t i t ude ,  posit ion,  and velocity at  each shadow- 
graph s ta t ion.  
dissector described below. 

Standard range equip- 

Radiation data for  the investigation were obtained with the image 

Image Dissector 

The image dissector, shown schematically i n  figure 1, w a s  mounted downrange 
of a shadowgraph s ta t ion.  A mirror, located inside the t e s t  chamber, directed 
radiation fromthe hot gas i n  the shock layer through a lens, thus producing a 
near head-on image on an or i f ice  p la te .  The motion of the model caused the image 
t o  move across the p la te .  The or i f ice  p la te  contained an array of up t o  20 holes 
arranged i n  4 ver t i ca l  columns as shown i n  the enlarged view i n  the figure.  
holes were spaced i n  each column s o  tha t  only one could receive radiation from 
the hot shock layer  during any one tes t .  Thus, model s ize  and magnification of 
the opt ical  system dictated hole spacing which varied from 3 t o  LO millimeters. 
The ve r t i ca l  positon of holes was staggered from column t o  column so t h a t  holes 
i n  various columns scanned l a t e r a l  s t r i p s  across the model face a t  different  
ve r t i ca l  heights. Behind each column w a s  a luc i t e  s t r i p ,  1.23 by 32 by 230 

The 
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millimeters long, which carried the radiation t o  a photomultiplier tube. 
his tory of the radiation seen by each tube w a s  recorded on an oscilloscope. 

A time 

A lens ,  f1:2.5, with a 7-inch focal  length w a s  used t o  image the model and 
i t s  associated luminous shock layer .  The lens w a s  mounted so tha t  the model 
image was  demagnified 2.9 times a t  the or i f ice  p la te .  
diameter holes, the maximum idea l  resolution w a s  a spot 2.9xO.0127 = 0.0368 em 
i n  diameter. 
size (i.e , resolving power) varied from about 2.5 t o  5 percent of the model 
diameter. 
ideal  object plane, the lens w a s  stopped down t o  f1:16. 

For a p la te  with 0.0127-em 

Model diameters ranged from 1.525 t o  0.762 em. Therefore the spot 

To minimize the loss  of resolution for  model positions away from the 

The dissector w a s  alined after each test  as described below. The mirror 
w a s  adjusted s o  tha t  the focused image of a small l i g h t  source, placed on the 
gun bore s ight ,  f e l l  on the center hole i n  the second column of the or i f ice  
plate .  Shadowgraphs of the l i gh t  source recorded the  height of the plane scanned 
by the hole. The re la t ive  posit ion of the other holes i n  the or i f ice  p la te  per- 
mitted calculation of the region scanned by each hole. 
alined, the angle, $, between the opt ical  ax is  and bore sight was computed. The 
angle varied between 8' and 9'. 

Once the instrument w a s  

To determine F, the fract ion of radiation observed, the re la t ive  response 
of the system must be known. 
were measured separately. A re la t ive  response ( f ig .  2) of the en t i r e  system i s  
determined from the combination of these transmissivit ies with the re la t ive  
response of the photomultiplier tube. The mirror reflectance w a s  considered t o  
be constant over the range of wave lengths passed by other par t s  of the opt ical  

The transmissivit ies of the lens and p las t ic  s t r i p s  

system. With the response, 

The absorption coefficient 
ature and density. Figure 

R(A), thus obtained, F can be computed from: 

( p T ) ,  taken from reference 5 ,  i s  a function of teqer-  
3 shows F versus T fo r  ps/po of 0.1 and 1.0. 

Since F i s  a function of the loca l  temperature and density, it was neces- 
sary t o  determine whether it changed appreciably during a scan as a r e su l t  of the 
variation of p and T with posit ion across the model face. To t h i s  end, a 
sartrple calculation w a s  made. 
r a t i o  pm/po = 0.013 
the value of F were computed ju s t  behind the bow shock and along the stream- 
l i n e  over the body surface from the stagnation point t o  the body edge. 
shows the r e su l t s  of t h i s  calculation. The f rac t ion  F i s  found t o  vary a 
maximum of about 15 percent at  the  shock wave and about 3 percent along the body. 
Therefore, i n  the analysis of the data, it w a s  assumed t o  be constant. 

For R/d = 1.2, V, = 7.0 km/sec, and a t  a density 
the equilibrium temperature and density and, consequently, 

Figure 4 

The re la t ive  sens i t iv i ty  of various holes i n  the image dissector together 
with t h e i r  associated p l a s t i c  s t r i p s  and photomultiplier tubes was individually 
determined by means of a standard tungsten ribbon lamp. The cent ra l  portion of 



the ribbon was imaged on each hole and the ouput recorded. 
normalized t o  the sens i t iv i ty  of the middle hole i n  the second column. 

A l l  values were 

DATA €BDUCTION €'ROCEDURF: 

The typ ica l  oscillograph recordings obtained during scans of model faces 
shown i n  figures 5(a), (b), and (e) i l l u s t r a t e  changes i n  t race shape due t o  
model nose shape and some consequences of signal pickup from the wake. 
t race for  a p l a s t i c  sphere, f igure 5(a), has a triangular shape while the t race 
fo r  A major contribution t o  noise i s  
from holes which do not scan the model face and therefore pick up signals from 
the wake during a scan. 
because a l l  holes but one i n  each column were covered fo r  t h i s  t es t .  
shows a l i t t l e  lower signal-to-noise r a t i o  with a l l  holes open. 
case the noise l eve l  remained re la t ive ly  low because the f l i gh t  of a nonablating 
metal model w i t h  the resul t ing low intensi ty  wake w a s  observed. 
shows a high noise leve l  t race .  
image dissector holes were open. 

The 

R/d  = 1.2, figure 5(b) ,  i s  more rounded. 

I n  figure 5(a), the signal-to-noise r a t i o  i s  high 
Figure 5(b) 

In  t h i s  l a t t e r  

Figure 5(c)  
Here the model w a s  an ablating p las t ic  and a l l  

Two methods, depending on model nose shape, were used t o  r e l a t e  sweep t i m e  
on the oscilloscope t race t o  
was determined from the alinement procedure described previously. 
mum value of S/Se 
shadowgraphs taken during the test .  
R/d = l.2), the  radiation w a s  f a i r l y  uniform across the en t i r e  face and dropped 
off rapidly at  the edges. For these cases, the abrupt decrease i n  radiation was 
used t o  define the end points of the chord length scanned. Once the location of 
the edges was determined, the en t i re  time scale on the t race was correlated t o  
s/se.  For the rounder models, the recorded intensi ty  peaked sharply a t  the cen- 
t e r  of the scan. Therefore, correlation 
w a s  based on the maximum reading corre- 
sponding t o  the center of the chord 
scanned. Independent calculations of 
scan position along each s t r i p ,  based on 
model velocity, t ra jectory,  and viewing 
angle ( J I ) ,  verif ied the selection of end 
points 

S/Se. The horizontal plane scanned by each hole 

and chord length scanned by each hole was comguted from 
For the blunter shapes ( f la t  faced and 

Then the mini- 

Shock Model 

An intensi ty  correction due t o  change 
i n  the volume seen during a scan w a s  made 
for  a l l  except the flat-faced models. 
Radiation reaching a dissector hole at  any 
time during a scan comes from a tube whose 
length i s  approximated by G/cos Cp, as shown i n  the sketch. 
G/cos Cp changes s ignif icant ly  during a scan, the measured intensi ty  i s  multi- 
pl ied by cos Cp 
t r ibu t ion  of l i gh t  scattered off the model face; t h i s  factor  has l i t t l e  e f fec t  
on the dis t r ibut ion of radiation intensi ty  i f  the surface r e f l ec t iv i ty  i s  uniform 
as assumed. 

Volume of  gas viewed by hole 

Since the length 

at a l l  points t o  correct fo r  t h i s  e f fec t .  There i s  a l so  a con- 
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The minimum value of S/se scanned (?-.e., the closeness of scan l i ne  t o  the  
For a l l  t e s t s  except center of the model face) varied somewhat during the tests. 

one (the sphere), the minimum value of 

these cases, the data were plot ted normalized t o  a value of 1 for  
For 
t i on  predicted by the theory (which w i l l  be discussed l a t e r )  at the minimum value 
of s/se reached. 

s/s,  

R/d = 0.5, the  data were normalized t o  the value of the re la t ive  distribu- 

w a s  such tha t  the re la t ive  radia- 
t i on  dis t r ibut ion w a s  within 3 percent of the maximum value a t  S/Se = 0. In 

S/Se = 0. 

RESULTS I4ND DISCUSSION 

The resu l t s  of the present investigation i n  terms of the measured radiat ive 
intensi ty  re la t ive  t o  the stagnation-point value are plot ted i n  figures 6(a),  (b) ,  
( e ) ,  and (a) as a f m c t i o n  of 
of a t tack.  In  a l l  cases, the data are plot ted so that  reading from l e f t  t o  r igh t  
on the figwe corresponds t o  scanning the model face from the first edge which 
comes in to  view of the image dissector t o  the last edge. Notice that fo r  
R/d = 1.2, the r e su l t s  from both p l a s t i c  and m e t a l  models show essent ia l ly  the 
same intensi ty  dis t r ibut ion.  It i s  concluded, therefore, tha t  radiation from 
ablation products (see, e .g . ,  r e f .  6 )  i s  not affecting the shape of the 
distributions.  

s/se.  Data presented are fo r  bodies a t  Oo angle 

Predicted radiation dis t r ibut ions are  a l s o  indicated on these figures.  
Excluding the flat-faced body, these predictions a re  from reference 3 and repre- 
sent the re la t ive  radiat ive f lux  f a l l i n g  on the body surface ( i . e . ,  the t o t a l  
radiation received by a point from a l l  par t s  of the shock layer ) .  This dist inc- 
t i o n  between radiation f a l l i ng  on a surface element and that observed by the 
detector i s  important only when the gradient of intensi ty  w i t h  distance along the 
scan changes rapidly. The surface f lux  i s  an average of radiation from a f a i r l y  
large region of the shock layer while the present measurements yield more nearly 
loca l  values i n  the gas. The presence of a sharp edge, which e f fec ts  a rapid 
quenching, leads t o  a m a x i m  discrepancy of about 30 percent. Therefore the 
difference between the measured and calculated dis t r ibut ions should be small, 
ranging from zero at  the stagnation point t o  a maximum of 30 percent or less of 
the loca l  f lux a t  the edge. 

The calculation of the dis t r ibut ion for  the flat-faced model i s  described i n  
d e t a i l  i n  the appendix. It i s  based on numerical procedures similar t o  those 
used i n  reference 3. 

The predictions shown on the figures indicate tha t  the important variable 
influencing the nature of the radiat ion dis t r ibut ion i s  the nose shape, f l i g h t  
conditions being re la t ive ly  unimportant. The calculations i n  reference 3 cover 
veloci t ies  from 8 t o  16 kilometers per second and densi t ies  of approximately 
10-3 t o  lo-* standard atmosphere. 
a given body shape over t h i s  range of f l i g h t  conditions i s  about 15 percent. 
Therefore the curves used i n  figures 6(a) ,  (b ) ,  ( e ) ,  and (a) a re  for  average 
values of the dis t r ibut ion.  Measurements a l so  indicate nose shape t o  be the 
dominant variable over the range of f l i g h t  conditions tes ted.  In  general, there 

The maximum variation of the dis t r ibut ion for  
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i s  good agreement between the calculations and experiment except fo r  the 
R/d = 0.65 shape. 
and since poor correlation ex i s t s  between the two tests i n  figure 6(c) ,  the 
discrepancy i s  most probably due t o  model damage during launch although none was 
apparent from inspection of shadowgraph pictures.  The apparent agreement for  
R/d = 1 .2  fo r  large values of S/Se i s ,  i n  ac tua l i ty ,  a modest disagreement, 
since the measured values should be somewhat higher than the predictions a t  the 
body edge. 

Since agreement ex i s t s  fo r  both more and l e s s  blunt shapes, 

To generalize the shape of the radiative dis t r ibut ions as a function of 
R/d, it i s  instructive t o  plot  re la t ive  intensi ty  versus 0 instead of S/Se*  
Figure 7 shows the calculated values from reference 3 replotted i n  t h i s  manner. 
It can be seen that the shape of the curve i s  essent ia l ly  the same for  a l l  R/d  
as long as sonic flow i s  achieved on the body face.  For cases where the sonic 
point i s  a t  the model edge (i .e. ,  f o r  bodies where the value of 
i s  substantially less than about 3 8 O ) ,  the curve will be similar at  small values 
of 
This is  demonstrated fo r  

0 a t  the corner 

6 but w i l l  drop off f a s t e r  as the e f fec ts  of the edge become important. 
a t  the body corner i s  24O. R/d = 1.2 fo r  which 6 

CONCLUDING IXEMABKS 

The dis t r ibut ion of the radiation re la t ive  t o  the stagnation-point f lux  has 
been measured across the faces of blunt axisymmetric bodies flying at hypersonic 
speeds and essent ia l ly  Oo angle of attack. 
hemisphere t o  a flat  face, the measured dis t r ibut ions are i n  fair agreement w i t h  
calculated dis t r ibut ions.  It has been demonstrated that the important parameter 
i s  the nose shape; changes i n  model material t es ted  and modest changes i n  f l i g h t  
conditions produced variations i n  the dis t r ibut ion smaller than the  experimental 
sca t te r .  The r e su l t s  of t h i s  work and the comparisons given herein offer con- 
vincing evidence tha t  our present understanding of the dis t r ibut ion of t h e r m 1  
radiation from blunt-body bow shock regions i n  thermodynamic and chemical 
equilibrium i s  well f ounded- 

Over a range of bluntness from a 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., July LO, 1963 
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APPENDIX 

CALCUraTION OF THE DISTRIBUTION OF FADIATION 

FOR A FLAT-FACED BODY 

The standoff distance a t  the stagnation point was determined from 
reference 7 

and the shock shape from reference 8 

rs/d = 1.22 (xs/d)00303 

The oblique shock re la t ions  and the r e a l  gas charts of reference 9 were used t o  
determine the temperature and density dis t r ibut ions ju s t  behind the  shock wave. 
The temperature and density dis t r ibut ions along the body surface were approxi- 
mated by assuming isentropic expansion fromthe stagnation point and by using an 
unpublished pressure dis t r ibut ion obtained from wind-tunnel data by Seiff and 
Stalder a t  Ames. This dis t r ibut ion i s  reproduced i n  figure 8. The temperature 
and density were assumed t o  vary l inear ly  from shock t o  wall and average values 
computed as a function of In the temperature and density range fo r  t h i s  
t e s t ,  reference 10 indicates t ha t  radiant f lux  varies approximately as the 1.3 
power of the density and the 11 power of the temperature. 
re la t ive  intensi ty  can be computed from 

S/Se. 

Therefore, the 

The r e su l t s  are given i n  figure 6(a). Because the variation of temperature and 
density from shock t o  wall i s  small, the error  incurred i n  using average values 
of these variables i s  about 1 percent. 
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(a) Plast ic  sphere; R/d = 0.5; one hole open. 

M 
Time __L 

e t a 1  model; R/d = 1.2; a l l  holes open. 

Scan-@- (D 

Time - 

lntensi t y  

(e)  Plast ic  model; R/d = 1.2; a l l  holes open. 

Figure 3 .- Image dissector oscilloscope t r ace ,  
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